If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-14w=0
a = 2; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·2·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*2}=\frac{0}{4} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*2}=\frac{28}{4} =7 $
| 5(2x+8)=8x-2(3x+5) | | 4+14•2x=7x+119 | | 3x-11=-12x+7 | | 12x-5x+160=12x+80 | | 200-5(3x+30)=600 | | 4t^2-16t-1=0 | | -7-3(x+4)=44 | | 40-7m=-8(m-4) | | a^2-4a+4=81 | | |y-2|+7=24 | | -5=1/6x+5 | | 5b-8=-7 | | -17=r-(-1) | | 5=3h-4 | | 3(2x-5)-10=35 | | 4x+9-7x=45 | | 8x-(5x+8)=8x-18 | | 1+7d-d=5d-4 | | C^2-4c-14=0 | | -25=-11+a | | 3(2d-8)=11d-18(d-3 | | 3^n=81^2 | | 8z=3(2z+1) | | 16z^2-144=0 | | 3/4x+1=-8;-12 | | 5n+6=-6 | | 5x+73x=-8+3x | | 3(4x+3)+3=31 | | 5/2x+1/2x=171/2+7/2x | | (X+6)/12=(5x-1)/3 | | (4x+3)=(7x+5) | | 5/10+t=7/10 |